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ABSTRACT 

This article introduces new scalable operating system architecture 

for real-time parallel computations. The operating system 

implements a novel Resource-Owner-Service (ROS) programming 

model and, according to the model, provides means of task 

execution, communication and synchronization. The model 

defines the concept of a channel as key communication and 

synchronization entity, and illustrates the use and efficiency of 

channels in parallel operations. Inherent scalability of an ROS-

based system makes it a perfect candidate for deployment in 

wireless sensor networks, known for their constrained resources 

and growing popularity. Sections below give an overview of 

design goals and principles behind the operating system, discuss 

the ROS programming model in detail, describe core operating 

system functionality, and furnish examples of parallel 

communications, typical channel topologies, statically and 

dynamically controllable task scheduling scheme, exemplary 

system layouts to fit different hardware resource usage scenarios, 

as well as possible requirements for programming languages to 

efficiently support the new operating system architecture.   

Categories and Subject Descriptors 

D.4.0 [Operating Systems]: General. D.4.7 [Operating 

Systems]: Organization and Design - Real-time systems and 

embedded systems. 

General Terms 

Algorithms, Performance, Design, Languages 

Keywords 

Operating systems, multi-tasking, parallel programming models, 

task communications. 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
Designing new operating system architectures usually pursues the 

following goals of (a) achieving low resource consumption, (b) 

maintaining scalability with regard to processor power, 

concurrency level, and storage capacity, that is, being equally 

applicable (with reasonable implementation tradeoffs) to low-

performance micro-computers and powerful servers, (c) providing 

unified solution for heterogeneous execution environments, i.e.,  

networks comprised of multiple machines of different 

architectures, level of parallelism, and performance, and (d) 

establishing easier implementation, deployment, and update 

processes,  minimizing the use of specific languages, compilers 

and development environments. 

Many of the aforementioned objectives become of extreme 

significance when choosing a platform for a wireless sensor 

network. Wireless sensor networks are specifically mentioned 

here because, with the advancement of the technology, we can 

expect a burst of production and adoption of compact, low-power 

processor, memory, and transmission devices. 

Given the nature of the problems they solve, designing wireless 

sensors is always a tradeoff between the physical constraints and 

computing power. With that in mind, two major trends can be 

foreseen in the future: either further miniaturization keeping the 

processor power at best the same, or inevitable increase of 

computing power when decreasing physical parameters does not 

add value to the system (standardized connection ports/pipe 

diameters, solar/inductive non-accumulative power supply, and so 

forth). In the latter case, an adaptive, parallel design is a must for 

any operating system. 

2. DESIGN PRINCIPLES 
This section introduces primary concepts of the operating system, 

discusses the basic design principles behind the chansys 

architecture, and explains solutions to key operating system 

design issues and functional blocks implementation problems. 

2.1 Resource-Owner-Service Model 
Let us begin with an example of Figure 1. Suppose, we need to 

design a network-connected system comprising a receiver-

transmitter, a local memory storage and capable of dynamic 

software update.  

According to the ROS model, the system may look as follows: a 

first, privileged task may be responsible for network interface and 

packet sorting services, a second, user-level task may be 

responsible for data processing, a third packet-consuming task 



should be responsible for handling code update packets. The third 

task should establish some means of communication with the 

second task in order to verify the version and capability of the 

new code and to signal the old task to complete. A fourth task 

may be responsible for memory storage access. The third task may 

pass the received and verified code to the storage manager for the 

actual (physical) update of the binary image. The new code may 

then transparently take over interfaces originally serviced by the 

second task, in accordance with ROS principles described below. 

P-TaskUART

U-Task0

U-Task1

U-Task2 STORE

Packet RW channel

Packet R channel

Verification channel

Code update channel

Owns UART Owns memory storage

Co-owned verification protocol: 
task0 completes, task1 updates memory image and restarts task0

 

Figure 1: An exemplary network-connected system 

The main properties of such design are: (a) all hardware (and 

software) resources (devices, storage space, or computational 

capabilities – that is, specific algorithmic solutions to certain 

problems) are assigned strict ownership, and (b) all resource 

owners communicate with each other by servicing each other’s 

requests and providing access to the owned resources. 

The following definitions may be useful. By owner we mean a 

resource-controlling agent (software program/task); service is a 

communication protocol between the owner and consumer agents. 

Now we can name the basic principles of the ROS model: 

resource ownership – all computational resources (hardware 

devices or algorithmic parts) are viewed as resources and are 

divided between owners (software programs/tasks); service 

orientation – all inter-task communications are performed by 

means of requesting and providing services. 

All the above resembles the traditional client-server design so far, 

except for the third principle – service instantiation. The service 

in ROS model is not a mere fact of communication or a data 

exchange interface, but rather becomes both a communication and 

synchronization entity. 

That is what a channel is: a shared object established for data and 

control transfer between tasks. The channels make ROS different 

from the client-server programming model: there is no strict 

distinction between the communicating agents any more, as all of 

them instantiate their resources/services and may be mutual 

service providers in accordance with their communication 

protocol. 

Yet another important property of the ROS model is 

communicational synchronization. Any control transfer between 

tasks (i.e., sharing execution time in a parallel or sequential 

(mutually exclusive) form) – something that cannot be done 

without operating system’s assistance, by definition – can be 

performed only in connection with a communication session, in 

other words, while accepting/providing some service; and since 

any service is always backed up by a material object (channel), the 

channel becomes a synchronization object unambiguously 

identifying the place and purpose (i.e., algorithmic role) of 

synchronization. 

The above statement does not deny the hardware-assisted mutual 

exclusion in multi-processor systems when a function running on 

one processor needs to synchronize its execution with the copies 

of the same function (or functions of the same channel) running 

on other processors. 

2.2 Cooperative Preemption 
In order not to waste computer resources (to reduce memory 

consumption for stack allocations, and to increase the 

performance by eliminating register saving instructions), each task 

can notify the chansys kernel that there is no need to preserve its 

context.  

Instead, the task provides a four-pointer execution environment in 

the {func(chan, sys, loc)} form, so that the kernel can release the 

task’s stack memory, and then, prior to the task’s activation, 

allocate a new stack (or give the current free stack) for the task, 

and call the specified function with the provided parameters. Note 

that register values other than those used in parameter transfer 

may be either undefined or cleared, which is in any case faster 

than the correct value preservation/restoration. Also note that the 

system clears the four-pointer context before activating the task to 

make sure it cannot be erroneously preempted when not ready for 

it. 

The cooperative preemption also means that if all tasks within the 

system adhere to the cooperative scheme, there may be no more 

than one stack per processor under ideal execution circumstances. 

Extra stacks will have to be allocated when a task is preempted 

prematurely, before it reaches its safe state and initializes the four-

pointer context. 

2.3 Yield-To Model 
The chansys design, unlike traditional operating systems, does not 

provide explicit wait or mutual exclusion functions. Instead, all 

inter-task synchronization is accomplished in the form of explicit 

control transfers to other tasks identified by the channel pointer 



and the task’s in-channel number. That is, the control is 

transferred not to some particular task with a certain task ID but 

rather to any agent that happened to provide a certain service, and 

happened to be indexed in a certain manner within its service 

channel.  

This type of synchronization implies that it is the communicating 

agents’ responsibility to establish such a communication protocol 

through their channel that will enable them to effectively transfer 

control to each other (or other dependent agents), to respond to 

mutual requests and exclude such inefficient means of 

synchronization as variable-polling.  

The operating system may support multiple yield strategies, such 

as yield-to-any, yield-as-specified, and yield-as-specified-

excluding-self. The latter strategy indicates that the “yielding” 

task does not intend to yield control at the current processor, so 

the new task should be activated in parallel with the current one. 

Note that yielding to a disconnected channel is ignored (the 

system call returns). 

2.4 Deterministic Task Schedule 
Each task (pretty much like in all modern operating systems) can 

be activated by a system timer, and since the chansys design 

should be applicable to real-time systems, it is decided that each 

task specifies its real-time requirements by means of the period of 

activation, and the duration of activation. Those two parameters 

are used to simplify the estimation of the anticipated system load, 

the number of expected task conflicts, and thus, to pre-allocate the 

necessary resources (e.g., stacks).  

Ideally, the sum of durations of all tasks should be less or equal to 

the smallest activation period, and the periods should be multiples 

of the smallest one. That would mean there would be no 

scheduled conflicts. Nevertheless, in the reality, some tasks may 

exceed their requested durations, in which case the tasks could be 

preempted by other ready tasks and placed on the ready list to be 

executed in the future during a free time slot. 

2.5 Performance-Driven Communication 
As everything is resource/service oriented, and there may be 

several providers of the same service (on a network or even 

locally), the only criterion to differentiate between multiple 

providers is their performance.  

To enable program performance management, the system channel 

contains active time and wait time counters providing information 

on the time of operation of the current task and the time of 

inactivity, respectively.  

Since it is usually known which task (channel) the control was 

transferred to, the channel performance may be easily estimated 

by sampling the wait time counter value each time the control is 

transferred back to the requesting task. By comparing 

performance of multiple service channels the task may hop to 

faster service providers, which is especially convenient when 

trying to adapt to dynamically changing communication 

conditions (vast networks, physically unstable environments, etc.). 

2.6 Channel Naming Convention 
The chansys design does not make any assumptions with regard to 

the type or purpose of each channel. So it is the sole responsibility 

of communicating agents to choose such channel identifiers that 

will enable correct differentiation of channel type, purpose, group, 

or whatever semantics may be required by the nature of 

communication. 

2.7 Channel Topology 
Every channel has a two-ended topology. The chansys design 

introduces two classes of channels: dual-channels, and multi-

channels. The former are those channels whose number of 

connected tasks cannot exceed 2, while the latter class of channels 

have no limitation with regard to the number of connected tasks 

(limited by particular operating system implementations and the 

memory size).  

Tasks connected to the opposite ends of a channel are called 

channel exporter and channel importer. There is not much 

substantial difference between these two types of tasks, both 

exporting and importing tasks should instantiate the channel, that 

is, allocate memory, and thus have a complete channel object 

present in their address spaces. The explicit differentiation 

between those two types of tasks is introduced to let tasks with 

conventional consumer (client) semantics connect to conventional 

producer (server) semantics, in case multiple dual channels of the 

same ID are used in the system (not to let one channel to be 

connected to by two consumers, what may lead to deadlocks if the 

channel usage semantics is not flexible).  

In case of multi-channels, those semantics have no meaning as all 

tasks will operate on a common channel object, and it is their 

responsibility to disambiguate their mutual accesses to the 

channel. Note that every channel, independent of the channel 

topology, may contain any combination of code and data. 

2.8 Simplified Code Structure 
Because of the channel-oriented design, and since the channels 

are dynamic data structures (are shared between address spaces, 

and thus can be moved from their initial location by the operating 

system kernel), the in-channel program code (and the task 

program code, in general) should be written in a position-

independent manner and should not rely on statically allocated 

data (or should locate such data relatively to the accessing code).  

This lack of statically allocated structures, given the general four-

pointer state specification plus position-independence, denies the 

need in complex program headers and determines the simplest 

possible program structure: every program is represented by a 

solid chunk of code and data (with optional differentiation 

between the two to enable access protection). The beginning of 

the chunk is the task start function that accepts the standard three-

pointer parameter set. 

3. CORE FUNCTIONALITY 
This section provides an overview of the internal system design, 

describes the structure and interaction of the functional blocks, 

and emphasizes the operation of some of the blocks where 

necessary. 



3.1 Core Functional Diagram 
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Figure 2: CHANSYS functional diagram 

According to the above diagram, the chansys operating system 

implements the following functional blocks: (a) memory manager 

(ME-M), (b) channel manager (CH-M), (c) system channel 

manager (SC-M), (d) task manager (TA-M), and (e) task 

dispatcher (TA-D). 

The operating system kernel owns processor and memory 

resources. The rest of system resources may be owned by 

privileged tasks, which, in their turn, provide service to user-level 

tasks by means of communication channels. The kernel identifies 

tasks and services task requests by means of system channels. The 

channels comprise shared memory locations, certain 

interconnection topology, and associated task scheduling services. 

3.2 Task Creation 
A task can be created from any piece of code. The address of the 

beginning of the code is treated as the task start function address. 

The task start function adheres to the four-pointer prototype 

{func(chan, sys, loc)}, wherein the chan and loc arguments are 

optional and sys is a pointer to the newly created  task’s system 

channel. Note that the task code is copied to a new physical 

location to simplify further channel operations (to avoid sharing 

conflict when exporting and then disconnecting the code as part of 

a channel). 

The tasks are organized as illustrated in the figure below. 

type

address space

task2chan

Task descriptors

heap pointer

stack pointer

exception handler

channel descidx

local pointer

channel descidx

local pointer

Figure 3: Task descriptor table 

Each task is associated with a task descriptor comprising 

information on the type of task (e.g., user-level or privileged) and 

providing pointers to the task’s address space page tables, local 

memory, stack, and exception handler chain.  

Additionally, the task descriptor comprises a channel mapping 

list, which is a list of channel descriptor indices associated with 

channel body pointers to locate the channels within the task’s 

address space. In case the tasks share a common address space, 

the channel pointers may be omitted for the sake of memory usage 

optimization. 

The first element of the channel mapping list describes the task’s 

system channel. The system channel stores the task’s execution 

context and other properties as will be described further in this 

section. 

3.3 Task Dispatching 
The chansys design provides for two types of task activation: (a) 

by the system timer according to a requested schedule; and (b) by 

explicit control transfer from another task. 

The activation schedule may be requested in terms of activation 

period and activation duration. Those two parameters determine 

the following task state diagram. 
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Figure 4: Task state change graph 

Initially, when a task is activated, it acquires a protected state 

(cannot be preempted). After the task operates longer than its 

specified duration, the task becomes eligible for preemption. In 

case another task is on the list of activation (ready list), the system 

may preempt the first task, place its descriptor on the ready list 

and activate the second task. The newly activated task resumes 

execution in either active (in case it was previously preempted) or 

protected state (in case of scheduled execution). Particular 

implementations of the operating system task dispatchers may 

always resume the tasks in the protected state.  

It is important to note here that the period-oriented scheduling 

specification enables the system kernel to guarantee a certain 

frequency of activation to the real-time tasks, rather than a certain 

activation deadline. Thus, the system is allowed to “shift” tasks in 

time as long as it does not break the activation frequency. The 

specification of the duration enables to avoid complicated task 

priority issues by defining the pre-scheduled (pre-requested) on-

off time ratio. Particular system implementations may limit the 

duration to the maximal length of time quantum to prevent 

“greedy” tasks from occupying the processor infinitely. All the 

above simplifies the scheduler design and hopefully provides for 

faster task scheduling. 



Explicit control transfers may be performed by means of 

yield() system call by specifying new task identifiers (channel 

pointer/in-channel index)  and  the processors, on which to 

activate the tasks. The operating system kernel may also support 

control transfer strategies to allow tasks to yield execution to any 

unspecified ready task or to run other tasks in parallel, without 

actually yielding the control. 

In order to optimally utilize system resources, each task may 

signal to the system kernel that it reached a steady state and does 

not require preservation of registers and stack data (cooperative 

preemption). The operating system in this case may free the task’s 

stack and discard registers upon yield() system call. When 

activating such a task, the system calls the specified four-pointer 

prototype {func(chan, sys, loc)} function at an empty 

stack and undefined register context. 

Along with the aforementioned cooperative preemption, the 

chansys design implies resource-efficient task scheduling scheme. 

Since task schedules are specified as activation period and 

duration, the operating system task dispatcher may detect 

inevitable scheduling conflicts (see the diagram below) and either 

deny the scheduling request or relax the real-time scheduling 

constraints. 

Each scheduling conflict makes the operating system kernel 

allocate extra resources (a new stack for the activating task) in 

order to enable fully-preemptive multitasking. Similarly, when a 

dynamic scheduling conflict is detected (because a task exceeded 

its requested duration), the system will have to allocate extra stack 

memory and preempt the guilty task, not to break the real-time 

schedule. 
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Scheduled conflict:
(a) Warn that real-time operation 

cannot be performed

(b) Allocate a new stack

Requested task schedules

Dynamic conflict:
(a) Preempt the current thread

(b) Allocate a new stack

(c) Run the next real-time thread

The schedule cannot be 

executed as specified

The task exceeded its duration

 

Figure 5: Requested task scheduling properties and detectable task scheduling conflicts 

To enable scheduled and preemptive task activation, the task 

dispatcher maintains a ready task list as shown in the figure 

below. The circular ready list comprises task descriptor indices (or 

pointers) and scheduled activation time (or zero for preempted 

tasks).  

The time may be in absolute or relative units, up to the largest 

period, and is updated in accordance with the requested activation 

periods. When a task is preempted (or yields control), its 

descriptor is inserted into the first available slot on the circular 

list. Note that a task may be inserted in the list before other tasks, 

in case its activation deadline comes earlier, hence the ready list is 

time-ordered. 

Ready tasks can be picked up from the list starting from the ready 

list’s tail pointer or from task list pointers provided in processor 

control blocks (described further in this section). 

time task index prev nexthead tail time task index prev next

Ready task list (circular)

 

Figure 6: Ready task list maintained by the task dispatcher 

The task dispatcher overhead can be theoretically decomposed 

into the static and dynamic parts. The former is a constant time of 

processor context initialization (note that the chansys design 

provides for faster context initialization due to cooperative 

preemption), while the latter is the overhead of the task dispatcher 

itself, proportional to the number of search operations over the 

ready list (both to find a current ready task and to insert a new 

ready task). There is no need to search for a task to be activated, 

since it is always located at the tail pointer. The task insertion 

overhead can be minimal in case the tasks have requested equal 

activation periods. Otherwise, the search can be performed in a 

logarithmic time, since the ready list comprises a set of contiguous 

chunks of mostly sorted data, and the unsorted elements can be 

reached by the chained links. 



3.4 Channel Management 
To manage channel operations, the system organizes allocated 

channels as shown in the figure below. According to the figure, 

each channel is associated with a channel descriptor. The 

descriptor stores information on the channel topology, identifier, 

and provides pointers to the channel body (in the common address 

space where all channels are allocated) and to descriptors of all 

tasks that are connected to the channel. 

The backward channel-to-task links are necessary for task 

identification by means of channel pointer and in-channel index 

(for inter-task control passing). The in-channel index in this 

scheme is the position of the task descriptor on the task descriptor 

list (chan2task). 

type

body pointer

guid

Channel descriptors

chan2task task descidx task descidx

Figure 7: Channel descriptor table 

3.5 Memory Management 
Memory management schemes are not explicitly specified by the 

chansys design. Any traditional scheme will do, as there is no 

dependency of the kernel on a particular memory handling 

method. 

Thus, Memory Control Block based allocation schemes may be 

applicable to shared address space environments; various Page 

Table based algorithms should be used for address space 

separation/virtualization (including linearly non-fragmented 

scheme for the cases when the amount of available physical 

memory is much less than the linear space). 

No matter which memory control algorithm is chosen, the 

operating system kernel has to ensure all channels are allocated in 

a common address space in a manner that enables unambiguous 

mapping of the channels to the address spaces of their connected 

tasks. 

3.6 System Calls and Context Management 
System channels are complex means of task identification, task 

context preservation, getting system information, emitting system 

calls, and passing control to other tasks. 

Figure 8 below sketches the structure of the system channel. Thus, 

arguments for syscall (break, interrupt, sysenter) instruction are 

copied to permanent places within the channel, rather than being 

transferred on the stack or in registers. 

System information (comprising any information on the computer 

system properties and capabilities) is present in the system 

channel and hence is readily available without extra system call 

overhead. The combination of the four-pointer execution 

environment and the execution context in the same system 

channel may be convenient for remote task debugging/monitoring 

purposes. 

Per-task timing information is updated by the kernel in real time. 

Per-processor fields enable parallel task activation (the tasks are 

identified by their channel pointers and in-channel indices). 

The chansys system implementations may dedicate one register 

(available for reading to not privileged tasks) to serve as a 

permanent pointer to the current task system channel (a segment 

register, for example, given hardware support), so that the tasks 

are not required to preserve the system channel pointer and may 

reference it via a macro definition instead. 
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Figure 8: System channel: a combination of task context, system information, performance data, per-processor task scheduling 

configuration, and system call parameters 

At least the following system calls should be supported: 

(1) int exec(func, size, type, arg0, arg1);  

- creates a new task from the specified function of the specified 

size; returns status{ok, err}; 

(2) int yield(chan, subidx, strategy); 

   int yield(); for per-processor specification; 

- passes control to the task connected to the specified channel at 

the specified index; returns status{ok, err}; 

(3) void exit(); 

- terminates the calling task; 

(4) void* malloc(size, type); 



- allocates a memory buffer of the specified size and type; returns 

a pointer to the allocated buffer; 

(5) int free(pointer); 

- releases memory of the specified buffer; returns status{ok, err}; 

(6) void* export(pointer, guid, type); 

- exports a channel of the specified ID and topology (type) at the 

specified address; returns a new address of the channel; 

(7) void* import(pointer, guid, type); 

- imports a channel of the specified ID and topology (type) at the 

specified address; returns a new address of the channel; 

(8) int disconnect(pointer); 

- disconnects from the specified channel; returns status{ok, err, 

channel_destroyed}; 

(9) int self(pointer); 

- returns the in-channel index of the specified channel. 

3.7 Processor Management 
Each processor within the system is assigned a Processor Control 

Block which contains some properties of the currently executed 

task (see the diagram below).  Other processor control tables 

(interrupt and system descriptor tables), including inter-processor 

interrupt support structures, are not listed here. 

current time
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Processor Control Blocks

current task

current time

task list head

exception handler

current task
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Figure 9: Processor control structures providing task 

execution environment 

3.8 Debugging Support 
Debugging support is not covered in detail in this article. The 

chansys design provides for variations in the debugging area.  

The debugging capabilities may be provided by either the kernel 

itself or by a dedicated privileged task by means of establishing a 

debug channel to place commands and receive data. The 

commands may comprise requests for read/write access to a task’s 

memory, including channels and the system channel. The 

debugger task may also query memory region status of the 

debuggee and receive notifications on system calls, debug 

exceptions, etc. Note that access to the debuggee’s system channel 

means access to its register context.  

A task may debug any other task it creates; a privileged (or even 

an ordinary, if the system is so configured) task may debug any 

other task whose channels it connects; a privileged task (having 

access to internal operating system resources) may debug any task 

within the system. 

4. CORE COMPLEXITY LEVELS 
The complexity of particular chansys implementations may vary 

depending on available memory resources, processor capabilities 

and performance. The following subsections describe the options 

for adjusting the complexity of the operating system kernel. 

4.1 Channel Management Complexity 
Channels being the central part of the chansys design provide a 

good deal of variation. Thus, particular systems may not support 

all of the proposed channel types (topologies) and implement 

different schemes of channel identification. 

For example, the channels may be identified using globally unique 

128-bit identifiers, or by assigned certain indices whose validity 

may be controlled by some sort of local (system-wide, network-

wide) or global (inter-network, inter-organizational) arbitration 

authority. Another option may be named channels, whose names 

are constructed in the form of hierarchical paths (similar to file 

system paths). 

As to different channel types (topologies), the system developers 

may choose to support dual-channels only, which will eliminate 

the need for dynamic allocation of channel member lists. In 

addition, the system may lack support for code channels (or at 

least mixed code and data channels), thus enabling the use of 

traditional compilers and development environments (as there will 

be no need for aggregation of code and data). 

4.2 Memory Management Complexity 
The chansys design may be equally implemented using shared or 

separated address spaces, whichever fits particular system 

requirements better. 

Similarly, and independently from the chosen memory 

virtualization scheme, particular chansys implementations may or 

may not support memory protection, overlaying, or swap-out. 

4.3 Task Management Complexity 
As in some state-of-the-art operating system, the chansys design 

provides an option of implementing tasks as either processes or 

threads, that is, the tasks are either supposed to be  isolated 

(logically and physically, if processor hardware permits), or share 

the same address space and thus are “encouraged” to pass data via 

shared variables. 

Another task differentiation criterion is a task privilege level, that 

is, the availability of certain system and processor resources (e.g., 

inter-processor interrupts, processor descriptor tables, input-

output ports) to the task. It is possible to implement privileged 

tasks only, and in that manner save efforts otherwise spent on task 

isolation, memory and processor resource protection, and so forth. 

In case both privileged and non-privileged tasks are supported, 

the chansys design provides the following options for 

implementing privileged operations. 

Firstly, all privileged operations may be performed by the kernel 

only; in other words, all privileged programs become part of the 

system kernel and execute in the kernel’s (or requestor’s) context 

(joint scheme).  

On the positive side, servicing privileged operations may not 

require switching task contexts (the operations are performed in 

the requestor’s context) in case the system kernel’s address space 

is mapped to each task’s address space. Besides, since the system 



kernel is always threaded by the number of processors, parallel 

tasks requesting privileged operations will not be stalled even if it 

is not possible to execute in the context of the requesting task. 

On the negative side, the requesting task will not be able to 

continue execution until the request is processed. 

Secondly, all privileged tasks may be separated from the kernel 

(separate scheme). This solves the problem of parallel execution 

of the requesting and servicing tasks, but introduces an extra 

context switch upon each request and upon each interrupt 

reception (as interrupts owned by privileged tasks may occur 

during execution of any other task). 

A combination of the joint and separate schemes of privileged 

operations may be a beneficial solution. By default, all privileged 

operations may be performed on behalf of the requesting tasks (as 

part of the kernel), and, if needed, may create other privileged 

tasks that run separately and transfer control and data by general 

means of channeled communications. 

The following extension to the above described core functionality 

may be required: an extra system call to connect to an interrupt 

vector, and a channel service function to be called by the system 

kernel when the control is transferred to a privileged channel 

whose owner is part of the system kernel rather than a separate 

task. 

type

body pointer

guid

Channel descriptors

chan2task task descidx task descidx

func(chan, sys, loc)

 

Figure 10: Four-pointer service function associated with 

channels serviced without a task switch 

 

(10) int connect(int vector, void* 

handler); 

- the system checks the requestor privileges, and the current task 

index; it is the system kernel’s responsibility to ensure the 

handler’s context is switched to the privileged requestor task upon 

reception of each interrupt at the specified vector; zero handler 

parameter removes the previously installed interrupt handler; 

returns status{ok, err} 

5. CHANNELED COMMUNICATION 

EXAMPLES 
This section furnishes several communication models which 

illustrate the use of dual- and multi- channel topologies, as well as 

advanced methods of task synchronization, request servicing and 

data transfer. 

5.1 Dual Channels 
The simplest task communication models (but not the least 

efficient) are dual-channels. Such channels are guaranteed to 

serve at most two communicating agents, though each of the 

agents may connect to more than one channel of the same ID. 

U-Task0 U-Task1

U-Task0 U-Task2

U-Task0 U-Task3

Dual-channel (data)

Multiple dual-channels exported by one task.

Tasks pass control to each other independently

Figure 11: Communication through dual data channels 

Dual data channels are efficient data transfer means, wherein the 

connected agents copy their data to the shared in-channel location 

and notify each other on the completion of the data 

copying/processing operation (so that the counterpart doesn’t 

waste processor resources). 

U-Task0 U-Task1

Code

Virtual Channel Table

Data

yield yield

Dual-channel (code)

Here and in similar figures 

crossed lines indicate that 

yields are performed by the 

in-channel code on behalf of 

the current task 

Figure 12: Communication through dual code channels 

Dual code channels are almost equivalent to the data channels, the 

only difference being they provide a shared interface that 

encapsulates data transfer and processing operations, which may 

be more convenient in some cases of object-oriented design. 

5.2 Multi-Channels 
Multi-channels may be employed for providing computational 

service: that is, sharing code between multiple tasks (similar to 

dynamic load libraries in many traditional operating systems).  

The shared code does not necessarily need to be backed by its 

exporter task. 



U-Task0 U-Task1

Code

Virtual Channel Table

Data

return

Abandoned multi-channel (code)

U-Task2

return

 

Figure 13: Abandoned multi code channel analogous to a 

dynamic load library 

Indeed, the exporter task may initially export the channel and 

terminate, and the in-channel code, when imported, will allocate 

local data in the address space of the importing task, and thus will 

become fully integrated with the importer and, at the same time, 

isolated from other importers (in case the particular system 

implementation supports address space isolation). 

More advanced multi-channel configurations are described in the 

subsections below. 

5.3 Task Pools 
Task pools are intended for supporting SMP-like synchronization 

models. The data channel connected to by multiple tasks may both 

contain the shared data being processed in parallel, and serve as a 

means of synchronization by holding the number of participating 

tasks and, optionally, their channel-related indices. 

The idea behind task pools is to employ operating system’s task 

scheduling capabilities and establish efficient synchronization of 

parallel tasks (as opposed to the most primitive channel-polling 

synchronization scheme). 

U-Task0

U-Task1

Data

Sync-header

Choose multiple

Register (increment)

Yield to the chosen

Multi-channel (data)

U-Task2

Yield-back U-Task3

The master task chooses a set of worker tasks (by in-channel indices)

And transfers control to the chosen on all processors;

The completed worker tasks yield back to the master

Yield to the chosen

Figure 14: Implementation of thread pools on multi data 

channels 

The exporter of the channel may assume work distributor’s 

responsibility and, since the number of processors and the number 

of participating tasks are known, the exporter may yield execution 

to certain tasks at certain processors. When the tasks finish 

processing their data, they may return control to the distributor 

task. 

5.4 Request Pools 
The request pool model may be efficient when sharing large 

memory buffers or servicing a big number of clients, when 

establishing a separate channel per client would have wasted the 

memory space. 

The pools provide arbitration interfaces, so that an arbitration 

winner can place the request (transfer data), and other requestors 

can be switched to an inactive state (in a transparent manner – by 

the in-channel code). When the servicing of the winner completes, 

the winner gets notified, copies its output data, and then renews 

the arbitration. 

U-Task0

U-Task1

Code

Virtual Channel Table

Data
Pass data

Request

Arbitrate, choose 

client, yield-to

Then yield-to when chosen

Multi-channel (code)

U-Task2

Yield-to

U-Task3

Release

Yield-to none

Arbitrates (lock-based synchronization) between requestors;

Yield to none on behalf of losers;

service a winner, yield back to the winner, who releases the request;

Arbitrate between losers, choose a winner, yield to the winner, and so forth

Figure 15: Request pool communication model 

Further on, a new winner is selected from the other requestors, is 

woken up by a yield-to operation, and the above procedure 

repeats. 

5.5 Access Tokens 
Access tokens enable a model of sharing data between (and/or 

receiving the same type/quality of servicing by) multiple 

tasks/agents without establishing the actual data transfer channels. 

Instead, a single (primary) service provider that manages the 

resources of/provides service to all the agents may be active in the 

system. 

U-Task0 U-Task1

Storage 

Manager

Maintains file systems

Exchange access tokens

Register own token; request access by the 

counterpart’s token as if to own file system

Figure 16: Communication model based on access tokens 

Each agent may request an access token from the service provider, 

and the access token will become a key to the data of the 



requesting agent. Then, the agents may share the token with other 

trusted agents (via a special channel of exchange), and the trusted 

agents may receive the same type of service or access the same 

data by providing the shared token to the primary service 

provider. 

5.6 Parallel Device Data Handling 
In many cases, it is necessary to provide multiple tasks with 

simultaneous access to data streams produced (consumed) by a 

hardware device. The figure below illustrates two typical 

examples of parallel device communications. 

The first one may be efficient if the system kernel differentiates 

between processes and threads. In this case, a dedicated task may 

handle all hardware device operations and buffer 

incoming/outgoing data streams, while the actual service to 

consumer tasks may be provided by threads, which have full 

access to internal buffers and thus may check for data availability 

and avoid unnecessary stalls. 

The other example may be applicable to packet-wise data 

processing. Here, the hardware-interfacing task may allocate 

necessary buffers inside the channels it exports (since the size of a 

packet is known and limited, so is the size of the buffers). Both 

sides connected to the channels are supposed to indicate data 

availability to each other, so that the servicing task may process 

all connected channels upon reception of a single request, without 

regard to where the request came from, thus facilitating parallel 

operations. 

U-Task0

U-Task1

P-Task0

P-Task1

P-Task2

Threads (share address space)

P-Task3

U-Task2

U-Task3

Channels provide storage 

for parsed packets

 

Figure 17: Thread-based (left) and in-channel buffering (right) parallel communication models 

5.7 Remote Channeling 
According to the location-independent nature of the ROS model, 

each agent in a local system may be connected to a channel 

exported remotely. For that purpose, so-called channel replicators 

may query their local systems for exported/imported channels, 

check on the network if those channels are requested, and 

maintain a pair (a set) of remotely synchronized channels in a 

manner transparent to their in-channel counterparts, as shown in 

the figure below. 

Network 

Service 

Provider
//

Channel 

Replicator

U-Task0

export

import

Channel 

Replicator

U-Task0

export

import

Network 

Service 

Provider

Acts as an ordinary client 

but duplicates the changes 

in the channel over network

Acts as an ordinary service 

channel exporter but 

duplicates the changes in 

the channel over network

 

 

Figure 18: Remote channeled communication 

Note that in order to efficiently support the remote channel 

replication, a new system call may be required: 

(11) int query(guid[], size[], type[]);  

- wherein guid[] is an array of channel IDs, size[] provides 

respective channel sizes, and type[] contains the channel 

request type/topology (imported, exported, or multi); returns the 

array length or error. 

6. SYSTEM DESIGN EXAMPLES 
This section furnishes several illustrational designs of resource-

constrained micro-systems. The section also lists the system 

booting procedure and shows how a general, not necessarily 

resource constrained system may be organized from the 

perspective of the chansys architecture. 

Note that all of those (micro-)system designs may be based on the 

following format of a boot media image. 



ptr bodytype
GUIDi..countcount

Task code,

Initialization procedure (for single-task cases), 

Channel body (for shared space cases)

GUID
ptr bodytype

GUIDi..countcount

GUID

Task (initialization 

procedure) or channel

Channel ID or 

List of channel IDs 

used by task

ROM/Flash/Boot Storage Layout

 

Figure 19: Exemplary system boot image layout 

The general idea is to let the operating system detect the 

availability of hardware resources and load up support programs 

as needed. The system may query hardware device IDs (in case 

device identification is supported by hardware), match them 

against the list of channel IDs, and run the tasks that claim 

dependency on the selected channel IDs. 

6.1 Single Task Systems 
In case a particular chansys implementation does not support 

multitasking, the operating system kernel may run the pieces of 

code of the boot image as procedures within the context of the 

single task.  

It becomes a programmer’s responsibility to ensure there is a 

primary procedure that will communicate to the kernel and 

organize the inter-procedural communication through the 

channels. 

6.2 Multi-Task Systems 
Naturally, in multitask environments, each piece of code becomes 

a separate task, exports and imports channels as reflected in the 

boot image, communicates directly to the kernel and is 

responsible for setting up its activation schedule and 

synchronization scheme. 

6.3 Shared Memory Space 
In micro-systems with limited amounts of memory and non-

virtualized address space, the boot image (in case the boot media 

is writable) may contain pre-initialized channel bodies in order to 

avoid extra memory allocations and minimize the system boot 

time. 

6.4 Differentiation of Privileges 
Optionally, if the processor supports memory protection, the 

system may differentiate between user-level tasks and privileged 

tasks, which are granted access to processor input-output 

resources and system memory. The level of task privilege is then 

provided in the boot image. 

6.5 General Booting Procedure 
The system boot procedure in accordance with the chansys design 

can be described as follows. 

(a) The boot image may be copied from read-only to random-

access memory, if necessary; (b) control is transferred to the main 

initialization procedure; (c) the initialization procedure creates 

(privileged) tasks (runs channel initialization procedures) for the 

channels whose identification matches that of available hardware; 

(d) the main initialization procedure also creates tasks for 

(initializes) the default channels, e.g., memory swap-out channel 

if the system supports memory virtualization. (e) The default 

channel tasks establish communication with initialized hardware 

service providers (e.g., hard drive channels). (f) After all default 

and hardware-managing tasks (and the corresponding channels) 

have been successfully initialized, the main initialization 

procedure loads the first non-privileged task (from either boot 

ROM or via the initialized channels), and that completes the 

system boot process. 

6.6 Channeled System Organization 
From the chansys architecture perspective, a typical personal 

computer system may be organized as shown in the figure below. 

A personal computer here serves merely illustrative purposes to 

let a reader quickly grasp the difference between traditional 

system designs and the chansys architecture employing ROS 

programming model. 

The major difference introduced by the chansys design is that the 

raw data are never exposed to the end user. Instead, all operations 

are performed in a purpose-(or service-) oriented manner. 

For example, the user may firstly select a desired operation (let it 

be insertion of a picture into a text document). Then, connect the 

selected operation with data sources. Note that there’s no need to 

specify the location of the pictures and documents any more: the 

user is responsible for object identification, that is, to specify what 

an object is rather than where it is located, hence no files, folders, 

and strict hierarchical data organization.  

The introduction of specialized data acquisition units enables 

more efficient search and indexing operations (including elements 

of artificial intelligence) performed over the stored data. And the 

presence of the topology configurator allows the user to change 

program communication pattern dynamically (and transparently to 

the communicating programs, as the channel communication 

semantics remain unchanged). The latter is especially convenient 

when abstracting remote communications. 



The semantic storage manager (that organizes the incoming data 

in accordance with its meaning – as reported by data providers) 

logically complements the channeled system design. 
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Figure 20: Typical personal computer system from the 

CHANSYS architecture perspective 

7. PROGRAMMING LANGUAGE 

SUPPORT 
This section discusses possible changes to C/C++ language syntax 

and code generation requirements in order to efficiently support 

the ROS programming model. 

7.1 Syntax Extension 
Existing programming languages may need to be extended in 

order to support the Resource-Owner-Service programming model 

and facilitate program development in/for the chansys 

environment. 

In case of C++ language, the extension that may affect the 

language semantics may be the channel type modifier to 

indicate the type contents should be aggregated into a form 

suitable for inter-task communication. The rest of communication 

channel-related problems may be solved using special support 

functions as illustrated in the figure below.  

According to the figure, a channel type has first to be declared 

(using channel type modifier), and memory regions for both 

exporter and importer sides of the channel need to be allocated 

(with standard memory allocation operators). Then, the channel 

can be connected to by means of exporting the channel on one 

side and importing the channel on the other side. That can be 

accomplished by calling the provided export() and 

import() functions and specifying channel pointers, the system 

channel pointer, and the channel type (multi vs. dual channel). 

The pointer checks after the function calls are given here for 

shared address space environments, where the operating system 

kernel is likely to move the channel body to some memory 

location other than the initially allocated. 

Each agent connected to a channel has its in-channel index 

(retrieved by self()), which remains the same unless the agent 

disconnects (calling disconnect() function) and then 

reconnects (by means of import() and export() functions) 

to the channel. 

The rest of channel-related functions are recommended to accept a 

pointer to a channel in question, a pointer to the current system 

channel (task pointer), and a pointer to the local storage or an 

optional parameter. This allows prototyping of the majority of 

channel functions, such as the initial task function, the channel 

initialization function (which is supposed to allocate and return a 

pointer to the allocated local storage), and any other function that 

may be contained in a channel. 

 

Figure 21: Exemplary C++ language support for Resource-

Owner-Service programming model 

 

Figure 22: In-channel and channel-related function prototypes 

7.2 Code Generation 
Care should be taken when writing programs for the chansys 

environment using compilers intended for other operating 

systems. It is a programmer’s responsibility not to use the static 

storage class variables and operate only on automatic (stack) and 

dynamically allocated data. Ideally, a chansys-specific compiler 

should be able to detect static data references and generate 

memory access address computation relatively to the accessing 

function address. 

Another problem that cannot be solved by traditional compilers 

(other than assembler) is the maintenance of combined code and 

/// in-channel functions are advised to have  

/// the following prototype, wherein: 

/// chanfunc may be: 

///  task start function with (arg0, sys, arg1) semantics 

///  channel initialization returning a pointer to local data,  

///  or any service function contained in a channel 

/// chan is the self-pointer to the channel 

/// sys is the pointer to the system channel 

/// loc is the pointer to local data or an optional parameter 
 

void* chanfunc(chan, sys, loc); 

/// declarations 

channel class A /// a new type modifier 

{ 

  int x; 

  virtual void f(); 

  void g(); 

} *a, *b, *c, *d; 

 

/// system channel – to make system calls 

syschan_t* sys; 

bool multi = false; /// or true for multi-channels 

 

/// allocations 

a = new A; /// combines x, f, g, and vft 

b = new A; /// import space allocation 

 

/// support functions 

c = export(a, sys, multi);     /// export a channel of type A 

if(c != a){ delete a; a = c; } /// the system moved the channel 

d = import(b, sys, multi);     /// import a channel of type A 

if(d != b){ delete b; b = d; } /// the system moved the channel 

 

int i = self(a, sys);  /// get in-channel client’s index 

disconnect(a, sys);    /// disconnect the exported channel 

disconnect(b, sys);    /// disconnect the imported channel 

/// OS may free channel descriptors now 



data channels. The chansys-specific compiler should be able to 

aggregate channel function bodies and channel data in order to 

construct a solid memory object to be further mapped, moved, and 

processed by the operating system as appropriate. 

For processor architectures that support data execution protection, 

the code and data aggregation should be performed on a different 

page basis not to compromise the system security. 

8. CONCLUSION 
Operating system is a key element that binds together various 

hardware and software components in a computer system, hence 

the efficiency of the operating system’s design and the maturity of 

its programming models often play a crucial role in the success or 

failure of the entire product. 

In this article we tried to address the challenges of modern parallel 

and distributed computer systems (focusing mainly on the needs 

of wireless sensor networks as the most extreme case of a 

heterogeneous system) by introducing a service-oriented approach 

to parallel program execution and communication. 

Such service orientation infers new principles of control transfer, 

task scheduling, and resource management, as well as new logical 

topologies of program communication and synchronization, 

which, in their turn, provide for a very adaptive and scalable 

operating system design and unification of programming models 

for a wide range of hardware systems, from sensor motes to 

desktops. 

Many of the disclosed operating system design principles were 

initially implemented by the authors of this article in 1999 as part 

of a light-weight operating system that served as a predictable and 

fully controllable testing environment for Windows NT 

executables. 

Since then, we refined and generalized our operating system 

architecture and plan to complete its implementation for a custom 

wireless sensor network, both at the sensor and base station sides, 

and port the monitoring, control, and communications software to 

the new channel-based parallel programming schemes. 
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