
Channeled Micro-System (CHANSYS) Design
1st Author

1st author's affiliation
1st line of address
2nd line of address

Telephone number, incl. country code

1st author's email address

2nd Author
2nd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

2nd E-mail

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT

This article introduces new scalable operating system architecture

for real-time parallel computations. The operating system

implements a novel Resource-Owner-Service (ROS) programming

model and, according to the model, provides means of task

execution, communication and synchronization. The model

defines the concept of a channel as key communication and

synchronization entity, and illustrates the use and efficiency of

channels in parallel operations. Inherent scalability of an ROS-

based system makes it a perfect candidate for deployment in

wireless sensor networks, known for their constrained resources

and growing popularity. Sections below give an overview of

design goals and principles behind the operating system, discuss

the ROS programming model in detail, describe core operating

system functionality, and furnish examples of parallel

communications, typical channel topologies, statically and

dynamically controllable task scheduling scheme, exemplary

system layouts to fit different hardware resource usage scenarios,

as well as possible requirements for programming languages to

efficiently support the new operating system architecture.

Categories and Subject Descriptors

D.4.0 [Operating Systems]: General. D.4.7 [Operating

Systems]: Organization and Design - Real-time systems and

embedded systems.

General Terms

Algorithms, Performance, Design, Languages

Keywords

Operating systems, multi-tasking, parallel programming models,

task communications.

1. INTRODUCTION
Designing new operating system architectures usually pursues the

following goals of (a) achieving low resource consumption, (b)

maintaining scalability with regard to processor power,

concurrency level, and storage capacity, that is, being equally

applicable (with reasonable implementation tradeoffs) to low-

performance micro-computers and powerful servers, (c) providing

unified solution for heterogeneous execution environments, i.e.,

networks comprised of multiple machines of different

architectures, level of parallelism, and performance, and (d)

establishing easier implementation, deployment, and update

processes, minimizing the use of specific languages, compilers

and development environments.

Many of the aforementioned objectives become of extreme

significance when choosing a platform for a wireless sensor

network. Wireless sensor networks are specifically mentioned

here because, with the advancement of the technology, we can

expect a burst of production and adoption of compact, low-power

processor, memory, and transmission devices.

Given the nature of the problems they solve, designing wireless

sensors is always a tradeoff between the physical constraints and

computing power. With that in mind, two major trends can be

foreseen in the future: either further miniaturization keeping the

processor power at best the same, or inevitable increase of

computing power when decreasing physical parameters does not

add value to the system (standardized connection ports/pipe

diameters, solar/inductive non-accumulative power supply, and so

forth). In the latter case, an adaptive, parallel design is a must for

any operating system.

2. DESIGN PRINCIPLES
This section introduces primary concepts of the operating system,

discusses the basic design principles behind the chansys

architecture, and explains solutions to key operating system

design issues and functional blocks implementation problems.

2.1 Resource-Owner-Service Model
Let us begin with an example of Figure 1. Suppose, we need to

design a network-connected system comprising a receiver-

transmitter, a local memory storage and capable of dynamic

software update.

According to the ROS model, the system may look as follows: a

first, privileged task may be responsible for network interface and

packet sorting services, a second, user-level task may be

responsible for data processing, a third packet-consuming task

should be responsible for handling code update packets. The third

task should establish some means of communication with the

second task in order to verify the version and capability of the

new code and to signal the old task to complete. A fourth task

may be responsible for memory storage access. The third task may

pass the received and verified code to the storage manager for the

actual (physical) update of the binary image. The new code may

then transparently take over interfaces originally serviced by the

second task, in accordance with ROS principles described below.

P-TaskUART

U-Task0

U-Task1

U-Task2 STORE

Packet RW channel

Packet R channel

Verification channel

Code update channel

Owns UART Owns memory storage

Co-owned verification protocol:
task0 completes, task1 updates memory image and restarts task0

Figure 1: An exemplary network-connected system

The main properties of such design are: (a) all hardware (and

software) resources (devices, storage space, or computational

capabilities – that is, specific algorithmic solutions to certain

problems) are assigned strict ownership, and (b) all resource

owners communicate with each other by servicing each other’s

requests and providing access to the owned resources.

The following definitions may be useful. By owner we mean a

resource-controlling agent (software program/task); service is a

communication protocol between the owner and consumer agents.

Now we can name the basic principles of the ROS model:

resource ownership – all computational resources (hardware

devices or algorithmic parts) are viewed as resources and are

divided between owners (software programs/tasks); service

orientation – all inter-task communications are performed by

means of requesting and providing services.

All the above resembles the traditional client-server design so far,

except for the third principle – service instantiation. The service

in ROS model is not a mere fact of communication or a data

exchange interface, but rather becomes both a communication and

synchronization entity.

That is what a channel is: a shared object established for data and

control transfer between tasks. The channels make ROS different

from the client-server programming model: there is no strict

distinction between the communicating agents any more, as all of

them instantiate their resources/services and may be mutual

service providers in accordance with their communication

protocol.

Yet another important property of the ROS model is

communicational synchronization. Any control transfer between

tasks (i.e., sharing execution time in a parallel or sequential

(mutually exclusive) form) – something that cannot be done

without operating system’s assistance, by definition – can be

performed only in connection with a communication session, in

other words, while accepting/providing some service; and since

any service is always backed up by a material object (channel), the

channel becomes a synchronization object unambiguously

identifying the place and purpose (i.e., algorithmic role) of

synchronization.

The above statement does not deny the hardware-assisted mutual

exclusion in multi-processor systems when a function running on

one processor needs to synchronize its execution with the copies

of the same function (or functions of the same channel) running

on other processors.

2.2 Cooperative Preemption
In order not to waste computer resources (to reduce memory

consumption for stack allocations, and to increase the

performance by eliminating register saving instructions), each task

can notify the chansys kernel that there is no need to preserve its

context.

Instead, the task provides a four-pointer execution environment in

the {func(chan, sys, loc)} form, so that the kernel can release the

task’s stack memory, and then, prior to the task’s activation,

allocate a new stack (or give the current free stack) for the task,

and call the specified function with the provided parameters. Note

that register values other than those used in parameter transfer

may be either undefined or cleared, which is in any case faster

than the correct value preservation/restoration. Also note that the

system clears the four-pointer context before activating the task to

make sure it cannot be erroneously preempted when not ready for

it.

The cooperative preemption also means that if all tasks within the

system adhere to the cooperative scheme, there may be no more

than one stack per processor under ideal execution circumstances.

Extra stacks will have to be allocated when a task is preempted

prematurely, before it reaches its safe state and initializes the four-

pointer context.

2.3 Yield-To Model
The chansys design, unlike traditional operating systems, does not

provide explicit wait or mutual exclusion functions. Instead, all

inter-task synchronization is accomplished in the form of explicit

control transfers to other tasks identified by the channel pointer

and the task’s in-channel number. That is, the control is

transferred not to some particular task with a certain task ID but

rather to any agent that happened to provide a certain service, and

happened to be indexed in a certain manner within its service

channel.

This type of synchronization implies that it is the communicating

agents’ responsibility to establish such a communication protocol

through their channel that will enable them to effectively transfer

control to each other (or other dependent agents), to respond to

mutual requests and exclude such inefficient means of

synchronization as variable-polling.

The operating system may support multiple yield strategies, such

as yield-to-any, yield-as-specified, and yield-as-specified-

excluding-self. The latter strategy indicates that the “yielding”

task does not intend to yield control at the current processor, so

the new task should be activated in parallel with the current one.

Note that yielding to a disconnected channel is ignored (the

system call returns).

2.4 Deterministic Task Schedule
Each task (pretty much like in all modern operating systems) can

be activated by a system timer, and since the chansys design

should be applicable to real-time systems, it is decided that each

task specifies its real-time requirements by means of the period of

activation, and the duration of activation. Those two parameters

are used to simplify the estimation of the anticipated system load,

the number of expected task conflicts, and thus, to pre-allocate the

necessary resources (e.g., stacks).

Ideally, the sum of durations of all tasks should be less or equal to

the smallest activation period, and the periods should be multiples

of the smallest one. That would mean there would be no

scheduled conflicts. Nevertheless, in the reality, some tasks may

exceed their requested durations, in which case the tasks could be

preempted by other ready tasks and placed on the ready list to be

executed in the future during a free time slot.

2.5 Performance-Driven Communication
As everything is resource/service oriented, and there may be

several providers of the same service (on a network or even

locally), the only criterion to differentiate between multiple

providers is their performance.

To enable program performance management, the system channel

contains active time and wait time counters providing information

on the time of operation of the current task and the time of

inactivity, respectively.

Since it is usually known which task (channel) the control was

transferred to, the channel performance may be easily estimated

by sampling the wait time counter value each time the control is

transferred back to the requesting task. By comparing

performance of multiple service channels the task may hop to

faster service providers, which is especially convenient when

trying to adapt to dynamically changing communication

conditions (vast networks, physically unstable environments, etc.).

2.6 Channel Naming Convention
The chansys design does not make any assumptions with regard to

the type or purpose of each channel. So it is the sole responsibility

of communicating agents to choose such channel identifiers that

will enable correct differentiation of channel type, purpose, group,

or whatever semantics may be required by the nature of

communication.

2.7 Channel Topology
Every channel has a two-ended topology. The chansys design

introduces two classes of channels: dual-channels, and multi-

channels. The former are those channels whose number of

connected tasks cannot exceed 2, while the latter class of channels

have no limitation with regard to the number of connected tasks

(limited by particular operating system implementations and the

memory size).

Tasks connected to the opposite ends of a channel are called

channel exporter and channel importer. There is not much

substantial difference between these two types of tasks, both

exporting and importing tasks should instantiate the channel, that

is, allocate memory, and thus have a complete channel object

present in their address spaces. The explicit differentiation

between those two types of tasks is introduced to let tasks with

conventional consumer (client) semantics connect to conventional

producer (server) semantics, in case multiple dual channels of the

same ID are used in the system (not to let one channel to be

connected to by two consumers, what may lead to deadlocks if the

channel usage semantics is not flexible).

In case of multi-channels, those semantics have no meaning as all

tasks will operate on a common channel object, and it is their

responsibility to disambiguate their mutual accesses to the

channel. Note that every channel, independent of the channel

topology, may contain any combination of code and data.

2.8 Simplified Code Structure
Because of the channel-oriented design, and since the channels

are dynamic data structures (are shared between address spaces,

and thus can be moved from their initial location by the operating

system kernel), the in-channel program code (and the task

program code, in general) should be written in a position-

independent manner and should not rely on statically allocated

data (or should locate such data relatively to the accessing code).

This lack of statically allocated structures, given the general four-

pointer state specification plus position-independence, denies the

need in complex program headers and determines the simplest

possible program structure: every program is represented by a

solid chunk of code and data (with optional differentiation

between the two to enable access protection). The beginning of

the chunk is the task start function that accepts the standard three-

pointer parameter set.

3. CORE FUNCTIONALITY
This section provides an overview of the internal system design,

describes the structure and interaction of the functional blocks,

and emphasizes the operation of some of the blocks where

necessary.

3.1 Core Functional Diagram

 memory

syschan channel syschan

SC-MCH-M ME-M

TA-D TA-M

U-TaskP-Task

CPU

CPU

DEV

DATA

INT

REFTIMER

Figure 2: CHANSYS functional diagram

According to the above diagram, the chansys operating system

implements the following functional blocks: (a) memory manager

(ME-M), (b) channel manager (CH-M), (c) system channel

manager (SC-M), (d) task manager (TA-M), and (e) task

dispatcher (TA-D).

The operating system kernel owns processor and memory

resources. The rest of system resources may be owned by

privileged tasks, which, in their turn, provide service to user-level

tasks by means of communication channels. The kernel identifies

tasks and services task requests by means of system channels. The

channels comprise shared memory locations, certain

interconnection topology, and associated task scheduling services.

3.2 Task Creation
A task can be created from any piece of code. The address of the

beginning of the code is treated as the task start function address.

The task start function adheres to the four-pointer prototype

{func(chan, sys, loc)}, wherein the chan and loc arguments are

optional and sys is a pointer to the newly created task’s system

channel. Note that the task code is copied to a new physical

location to simplify further channel operations (to avoid sharing

conflict when exporting and then disconnecting the code as part of

a channel).

The tasks are organized as illustrated in the figure below.

type

address space

task2chan

Task descriptors

heap pointer

stack pointer

exception handler

channel descidx

local pointer

channel descidx

local pointer

Figure 3: Task descriptor table

Each task is associated with a task descriptor comprising

information on the type of task (e.g., user-level or privileged) and

providing pointers to the task’s address space page tables, local

memory, stack, and exception handler chain.

Additionally, the task descriptor comprises a channel mapping

list, which is a list of channel descriptor indices associated with

channel body pointers to locate the channels within the task’s

address space. In case the tasks share a common address space,

the channel pointers may be omitted for the sake of memory usage

optimization.

The first element of the channel mapping list describes the task’s

system channel. The system channel stores the task’s execution

context and other properties as will be described further in this

section.

3.3 Task Dispatching
The chansys design provides for two types of task activation: (a)

by the system timer according to a requested schedule; and (b) by

explicit control transfer from another task.

The activation schedule may be requested in terms of activation

period and activation duration. Those two parameters determine

the following task state diagram.

idle
active-

protected

active

ready

 Preemption

Yield to none
Natural course

Timer

Ready schedule

Yield to by another

Timer

Figure 4: Task state change graph

Initially, when a task is activated, it acquires a protected state

(cannot be preempted). After the task operates longer than its

specified duration, the task becomes eligible for preemption. In

case another task is on the list of activation (ready list), the system

may preempt the first task, place its descriptor on the ready list

and activate the second task. The newly activated task resumes

execution in either active (in case it was previously preempted) or

protected state (in case of scheduled execution). Particular

implementations of the operating system task dispatchers may

always resume the tasks in the protected state.

It is important to note here that the period-oriented scheduling

specification enables the system kernel to guarantee a certain

frequency of activation to the real-time tasks, rather than a certain

activation deadline. Thus, the system is allowed to “shift” tasks in

time as long as it does not break the activation frequency. The

specification of the duration enables to avoid complicated task

priority issues by defining the pre-scheduled (pre-requested) on-

off time ratio. Particular system implementations may limit the

duration to the maximal length of time quantum to prevent

“greedy” tasks from occupying the processor infinitely. All the

above simplifies the scheduler design and hopefully provides for

faster task scheduling.

Explicit control transfers may be performed by means of

yield() system call by specifying new task identifiers (channel

pointer/in-channel index) and the processors, on which to

activate the tasks. The operating system kernel may also support

control transfer strategies to allow tasks to yield execution to any

unspecified ready task or to run other tasks in parallel, without

actually yielding the control.

In order to optimally utilize system resources, each task may

signal to the system kernel that it reached a steady state and does

not require preservation of registers and stack data (cooperative

preemption). The operating system in this case may free the task’s

stack and discard registers upon yield() system call. When

activating such a task, the system calls the specified four-pointer

prototype {func(chan, sys, loc)} function at an empty

stack and undefined register context.

Along with the aforementioned cooperative preemption, the

chansys design implies resource-efficient task scheduling scheme.

Since task schedules are specified as activation period and

duration, the operating system task dispatcher may detect

inevitable scheduling conflicts (see the diagram below) and either

deny the scheduling request or relax the real-time scheduling

constraints.

Each scheduling conflict makes the operating system kernel

allocate extra resources (a new stack for the activating task) in

order to enable fully-preemptive multitasking. Similarly, when a

dynamic scheduling conflict is detected (because a task exceeded

its requested duration), the system will have to allocate extra stack

memory and preempt the guilty task, not to break the real-time

schedule.

Period

Duration

Scheduled conflict:
(a) Warn that real-time operation

cannot be performed

(b) Allocate a new stack

Requested task schedules

Dynamic conflict:
(a) Preempt the current thread

(b) Allocate a new stack

(c) Run the next real-time thread

The schedule cannot be

executed as specified

The task exceeded its duration

Figure 5: Requested task scheduling properties and detectable task scheduling conflicts

To enable scheduled and preemptive task activation, the task

dispatcher maintains a ready task list as shown in the figure

below. The circular ready list comprises task descriptor indices (or

pointers) and scheduled activation time (or zero for preempted

tasks).

The time may be in absolute or relative units, up to the largest

period, and is updated in accordance with the requested activation

periods. When a task is preempted (or yields control), its

descriptor is inserted into the first available slot on the circular

list. Note that a task may be inserted in the list before other tasks,

in case its activation deadline comes earlier, hence the ready list is

time-ordered.

Ready tasks can be picked up from the list starting from the ready

list’s tail pointer or from task list pointers provided in processor

control blocks (described further in this section).

time task index prev nexthead tail time task index prev next

Ready task list (circular)

Figure 6: Ready task list maintained by the task dispatcher

The task dispatcher overhead can be theoretically decomposed

into the static and dynamic parts. The former is a constant time of

processor context initialization (note that the chansys design

provides for faster context initialization due to cooperative

preemption), while the latter is the overhead of the task dispatcher

itself, proportional to the number of search operations over the

ready list (both to find a current ready task and to insert a new

ready task). There is no need to search for a task to be activated,

since it is always located at the tail pointer. The task insertion

overhead can be minimal in case the tasks have requested equal

activation periods. Otherwise, the search can be performed in a

logarithmic time, since the ready list comprises a set of contiguous

chunks of mostly sorted data, and the unsorted elements can be

reached by the chained links.

3.4 Channel Management
To manage channel operations, the system organizes allocated

channels as shown in the figure below. According to the figure,

each channel is associated with a channel descriptor. The

descriptor stores information on the channel topology, identifier,

and provides pointers to the channel body (in the common address

space where all channels are allocated) and to descriptors of all

tasks that are connected to the channel.

The backward channel-to-task links are necessary for task

identification by means of channel pointer and in-channel index

(for inter-task control passing). The in-channel index in this

scheme is the position of the task descriptor on the task descriptor

list (chan2task).

type

body pointer

guid

Channel descriptors

chan2task task descidx task descidx

Figure 7: Channel descriptor table

3.5 Memory Management
Memory management schemes are not explicitly specified by the

chansys design. Any traditional scheme will do, as there is no

dependency of the kernel on a particular memory handling

method.

Thus, Memory Control Block based allocation schemes may be

applicable to shared address space environments; various Page

Table based algorithms should be used for address space

separation/virtualization (including linearly non-fragmented

scheme for the cases when the amount of available physical

memory is much less than the linear space).

No matter which memory control algorithm is chosen, the

operating system kernel has to ensure all channels are allocated in

a common address space in a manner that enables unambiguous

mapping of the channels to the address spaces of their connected

tasks.

3.6 System Calls and Context Management
System channels are complex means of task identification, task

context preservation, getting system information, emitting system

calls, and passing control to other tasks.

Figure 8 below sketches the structure of the system channel. Thus,

arguments for syscall (break, interrupt, sysenter) instruction are

copied to permanent places within the channel, rather than being

transferred on the stack or in registers.

System information (comprising any information on the computer

system properties and capabilities) is present in the system

channel and hence is readily available without extra system call

overhead. The combination of the four-pointer execution

environment and the execution context in the same system

channel may be convenient for remote task debugging/monitoring

purposes.

Per-task timing information is updated by the kernel in real time.

Per-processor fields enable parallel task activation (the tasks are

identified by their channel pointers and in-channel indices).

The chansys system implementations may dedicate one register

(available for reading to not privileged tasks) to serve as a

permanent pointer to the current task system channel (a segment

register, for example, given hardware support), so that the tasks

are not required to preserve the system channel pointer and may

reference it via a macro definition instead.

Syscall arguments-states

channel subidx strategy type

local period duration affinity

System info

Timing

active passive

Context –

registers, exception/stack-pointers

channel

subidx

strategy

Per-CPU yields

channel

subidx

strategy

channel

subidx

strategy

arch freq cpuno memsize

Execution environment

func chan sys loc

current

System channel

operation ret guid func

size pointer arg0 arg1

Figure 8: System channel: a combination of task context, system information, performance data, per-processor task scheduling

configuration, and system call parameters

At least the following system calls should be supported:

(1) int exec(func, size, type, arg0, arg1);

- creates a new task from the specified function of the specified

size; returns status{ok, err};

(2) int yield(chan, subidx, strategy);

 int yield(); for per-processor specification;

- passes control to the task connected to the specified channel at

the specified index; returns status{ok, err};

(3) void exit();

- terminates the calling task;

(4) void* malloc(size, type);

- allocates a memory buffer of the specified size and type; returns

a pointer to the allocated buffer;

(5) int free(pointer);

- releases memory of the specified buffer; returns status{ok, err};

(6) void* export(pointer, guid, type);

- exports a channel of the specified ID and topology (type) at the

specified address; returns a new address of the channel;

(7) void* import(pointer, guid, type);

- imports a channel of the specified ID and topology (type) at the

specified address; returns a new address of the channel;

(8) int disconnect(pointer);

- disconnects from the specified channel; returns status{ok, err,

channel_destroyed};

(9) int self(pointer);

- returns the in-channel index of the specified channel.

3.7 Processor Management
Each processor within the system is assigned a Processor Control

Block which contains some properties of the currently executed

task (see the diagram below). Other processor control tables

(interrupt and system descriptor tables), including inter-processor

interrupt support structures, are not listed here.

current time

task list pointer

exception handler

Processor Control Blocks

current task

current time

task list head

exception handler

current task

current stack current stack

Figure 9: Processor control structures providing task

execution environment

3.8 Debugging Support
Debugging support is not covered in detail in this article. The

chansys design provides for variations in the debugging area.

The debugging capabilities may be provided by either the kernel

itself or by a dedicated privileged task by means of establishing a

debug channel to place commands and receive data. The

commands may comprise requests for read/write access to a task’s

memory, including channels and the system channel. The

debugger task may also query memory region status of the

debuggee and receive notifications on system calls, debug

exceptions, etc. Note that access to the debuggee’s system channel

means access to its register context.

A task may debug any other task it creates; a privileged (or even

an ordinary, if the system is so configured) task may debug any

other task whose channels it connects; a privileged task (having

access to internal operating system resources) may debug any task

within the system.

4. CORE COMPLEXITY LEVELS
The complexity of particular chansys implementations may vary

depending on available memory resources, processor capabilities

and performance. The following subsections describe the options

for adjusting the complexity of the operating system kernel.

4.1 Channel Management Complexity
Channels being the central part of the chansys design provide a

good deal of variation. Thus, particular systems may not support

all of the proposed channel types (topologies) and implement

different schemes of channel identification.

For example, the channels may be identified using globally unique

128-bit identifiers, or by assigned certain indices whose validity

may be controlled by some sort of local (system-wide, network-

wide) or global (inter-network, inter-organizational) arbitration

authority. Another option may be named channels, whose names

are constructed in the form of hierarchical paths (similar to file

system paths).

As to different channel types (topologies), the system developers

may choose to support dual-channels only, which will eliminate

the need for dynamic allocation of channel member lists. In

addition, the system may lack support for code channels (or at

least mixed code and data channels), thus enabling the use of

traditional compilers and development environments (as there will

be no need for aggregation of code and data).

4.2 Memory Management Complexity
The chansys design may be equally implemented using shared or

separated address spaces, whichever fits particular system

requirements better.

Similarly, and independently from the chosen memory

virtualization scheme, particular chansys implementations may or

may not support memory protection, overlaying, or swap-out.

4.3 Task Management Complexity
As in some state-of-the-art operating system, the chansys design

provides an option of implementing tasks as either processes or

threads, that is, the tasks are either supposed to be isolated

(logically and physically, if processor hardware permits), or share

the same address space and thus are “encouraged” to pass data via

shared variables.

Another task differentiation criterion is a task privilege level, that

is, the availability of certain system and processor resources (e.g.,

inter-processor interrupts, processor descriptor tables, input-

output ports) to the task. It is possible to implement privileged

tasks only, and in that manner save efforts otherwise spent on task

isolation, memory and processor resource protection, and so forth.

In case both privileged and non-privileged tasks are supported,

the chansys design provides the following options for

implementing privileged operations.

Firstly, all privileged operations may be performed by the kernel

only; in other words, all privileged programs become part of the

system kernel and execute in the kernel’s (or requestor’s) context

(joint scheme).

On the positive side, servicing privileged operations may not

require switching task contexts (the operations are performed in

the requestor’s context) in case the system kernel’s address space

is mapped to each task’s address space. Besides, since the system

kernel is always threaded by the number of processors, parallel

tasks requesting privileged operations will not be stalled even if it

is not possible to execute in the context of the requesting task.

On the negative side, the requesting task will not be able to

continue execution until the request is processed.

Secondly, all privileged tasks may be separated from the kernel

(separate scheme). This solves the problem of parallel execution

of the requesting and servicing tasks, but introduces an extra

context switch upon each request and upon each interrupt

reception (as interrupts owned by privileged tasks may occur

during execution of any other task).

A combination of the joint and separate schemes of privileged

operations may be a beneficial solution. By default, all privileged

operations may be performed on behalf of the requesting tasks (as

part of the kernel), and, if needed, may create other privileged

tasks that run separately and transfer control and data by general

means of channeled communications.

The following extension to the above described core functionality

may be required: an extra system call to connect to an interrupt

vector, and a channel service function to be called by the system

kernel when the control is transferred to a privileged channel

whose owner is part of the system kernel rather than a separate

task.

type

body pointer

guid

Channel descriptors

chan2task task descidx task descidx

func(chan, sys, loc)

Figure 10: Four-pointer service function associated with

channels serviced without a task switch

(10) int connect(int vector, void*

handler);

- the system checks the requestor privileges, and the current task

index; it is the system kernel’s responsibility to ensure the

handler’s context is switched to the privileged requestor task upon

reception of each interrupt at the specified vector; zero handler

parameter removes the previously installed interrupt handler;

returns status{ok, err}

5. CHANNELED COMMUNICATION

EXAMPLES
This section furnishes several communication models which

illustrate the use of dual- and multi- channel topologies, as well as

advanced methods of task synchronization, request servicing and

data transfer.

5.1 Dual Channels
The simplest task communication models (but not the least

efficient) are dual-channels. Such channels are guaranteed to

serve at most two communicating agents, though each of the

agents may connect to more than one channel of the same ID.

U-Task0 U-Task1

U-Task0 U-Task2

U-Task0 U-Task3

Dual-channel (data)

Multiple dual-channels exported by one task.

Tasks pass control to each other independently

Figure 11: Communication through dual data channels

Dual data channels are efficient data transfer means, wherein the

connected agents copy their data to the shared in-channel location

and notify each other on the completion of the data

copying/processing operation (so that the counterpart doesn’t

waste processor resources).

U-Task0 U-Task1

Code

Virtual Channel Table

Data

yield yield

Dual-channel (code)

Here and in similar figures

crossed lines indicate that

yields are performed by the

in-channel code on behalf of

the current task

Figure 12: Communication through dual code channels

Dual code channels are almost equivalent to the data channels, the

only difference being they provide a shared interface that

encapsulates data transfer and processing operations, which may

be more convenient in some cases of object-oriented design.

5.2 Multi-Channels
Multi-channels may be employed for providing computational

service: that is, sharing code between multiple tasks (similar to

dynamic load libraries in many traditional operating systems).

The shared code does not necessarily need to be backed by its

exporter task.

U-Task0 U-Task1

Code

Virtual Channel Table

Data

return

Abandoned multi-channel (code)

U-Task2

return

Figure 13: Abandoned multi code channel analogous to a

dynamic load library

Indeed, the exporter task may initially export the channel and

terminate, and the in-channel code, when imported, will allocate

local data in the address space of the importing task, and thus will

become fully integrated with the importer and, at the same time,

isolated from other importers (in case the particular system

implementation supports address space isolation).

More advanced multi-channel configurations are described in the

subsections below.

5.3 Task Pools
Task pools are intended for supporting SMP-like synchronization

models. The data channel connected to by multiple tasks may both

contain the shared data being processed in parallel, and serve as a

means of synchronization by holding the number of participating

tasks and, optionally, their channel-related indices.

The idea behind task pools is to employ operating system’s task

scheduling capabilities and establish efficient synchronization of

parallel tasks (as opposed to the most primitive channel-polling

synchronization scheme).

U-Task0

U-Task1

Data

Sync-header

Choose multiple

Register (increment)

Yield to the chosen

Multi-channel (data)

U-Task2

Yield-back U-Task3

The master task chooses a set of worker tasks (by in-channel indices)

And transfers control to the chosen on all processors;

The completed worker tasks yield back to the master

Yield to the chosen

Figure 14: Implementation of thread pools on multi data

channels

The exporter of the channel may assume work distributor’s

responsibility and, since the number of processors and the number

of participating tasks are known, the exporter may yield execution

to certain tasks at certain processors. When the tasks finish

processing their data, they may return control to the distributor

task.

5.4 Request Pools
The request pool model may be efficient when sharing large

memory buffers or servicing a big number of clients, when

establishing a separate channel per client would have wasted the

memory space.

The pools provide arbitration interfaces, so that an arbitration

winner can place the request (transfer data), and other requestors

can be switched to an inactive state (in a transparent manner – by

the in-channel code). When the servicing of the winner completes,

the winner gets notified, copies its output data, and then renews

the arbitration.

U-Task0

U-Task1

Code

Virtual Channel Table

Data
Pass data

Request

Arbitrate, choose

client, yield-to

Then yield-to when chosen

Multi-channel (code)

U-Task2

Yield-to

U-Task3

Release

Yield-to none

Arbitrates (lock-based synchronization) between requestors;

Yield to none on behalf of losers;

service a winner, yield back to the winner, who releases the request;

Arbitrate between losers, choose a winner, yield to the winner, and so forth

Figure 15: Request pool communication model

Further on, a new winner is selected from the other requestors, is

woken up by a yield-to operation, and the above procedure

repeats.

5.5 Access Tokens
Access tokens enable a model of sharing data between (and/or

receiving the same type/quality of servicing by) multiple

tasks/agents without establishing the actual data transfer channels.

Instead, a single (primary) service provider that manages the

resources of/provides service to all the agents may be active in the

system.

U-Task0 U-Task1

Storage

Manager

Maintains file systems

Exchange access tokens

Register own token; request access by the

counterpart’s token as if to own file system

Figure 16: Communication model based on access tokens

Each agent may request an access token from the service provider,

and the access token will become a key to the data of the

requesting agent. Then, the agents may share the token with other

trusted agents (via a special channel of exchange), and the trusted

agents may receive the same type of service or access the same

data by providing the shared token to the primary service

provider.

5.6 Parallel Device Data Handling
In many cases, it is necessary to provide multiple tasks with

simultaneous access to data streams produced (consumed) by a

hardware device. The figure below illustrates two typical

examples of parallel device communications.

The first one may be efficient if the system kernel differentiates

between processes and threads. In this case, a dedicated task may

handle all hardware device operations and buffer

incoming/outgoing data streams, while the actual service to

consumer tasks may be provided by threads, which have full

access to internal buffers and thus may check for data availability

and avoid unnecessary stalls.

The other example may be applicable to packet-wise data

processing. Here, the hardware-interfacing task may allocate

necessary buffers inside the channels it exports (since the size of a

packet is known and limited, so is the size of the buffers). Both

sides connected to the channels are supposed to indicate data

availability to each other, so that the servicing task may process

all connected channels upon reception of a single request, without

regard to where the request came from, thus facilitating parallel

operations.

U-Task0

U-Task1

P-Task0

P-Task1

P-Task2

Threads (share address space)

P-Task3

U-Task2

U-Task3

Channels provide storage

for parsed packets

Figure 17: Thread-based (left) and in-channel buffering (right) parallel communication models

5.7 Remote Channeling
According to the location-independent nature of the ROS model,

each agent in a local system may be connected to a channel

exported remotely. For that purpose, so-called channel replicators

may query their local systems for exported/imported channels,

check on the network if those channels are requested, and

maintain a pair (a set) of remotely synchronized channels in a

manner transparent to their in-channel counterparts, as shown in

the figure below.

Network

Service

Provider
//

Channel

Replicator

U-Task0

export

import

Channel

Replicator

U-Task0

export

import

Network

Service

Provider

Acts as an ordinary client

but duplicates the changes

in the channel over network

Acts as an ordinary service

channel exporter but

duplicates the changes in

the channel over network

Figure 18: Remote channeled communication

Note that in order to efficiently support the remote channel

replication, a new system call may be required:

(11) int query(guid[], size[], type[]);

- wherein guid[] is an array of channel IDs, size[] provides

respective channel sizes, and type[] contains the channel

request type/topology (imported, exported, or multi); returns the

array length or error.

6. SYSTEM DESIGN EXAMPLES
This section furnishes several illustrational designs of resource-

constrained micro-systems. The section also lists the system

booting procedure and shows how a general, not necessarily

resource constrained system may be organized from the

perspective of the chansys architecture.

Note that all of those (micro-)system designs may be based on the

following format of a boot media image.

ptr bodytype
GUIDi..countcount

Task code,

Initialization procedure (for single-task cases),

Channel body (for shared space cases)

GUID
ptr bodytype

GUIDi..countcount

GUID

Task (initialization

procedure) or channel

Channel ID or

List of channel IDs

used by task

ROM/Flash/Boot Storage Layout

Figure 19: Exemplary system boot image layout

The general idea is to let the operating system detect the

availability of hardware resources and load up support programs

as needed. The system may query hardware device IDs (in case

device identification is supported by hardware), match them

against the list of channel IDs, and run the tasks that claim

dependency on the selected channel IDs.

6.1 Single Task Systems
In case a particular chansys implementation does not support

multitasking, the operating system kernel may run the pieces of

code of the boot image as procedures within the context of the

single task.

It becomes a programmer’s responsibility to ensure there is a

primary procedure that will communicate to the kernel and

organize the inter-procedural communication through the

channels.

6.2 Multi-Task Systems
Naturally, in multitask environments, each piece of code becomes

a separate task, exports and imports channels as reflected in the

boot image, communicates directly to the kernel and is

responsible for setting up its activation schedule and

synchronization scheme.

6.3 Shared Memory Space
In micro-systems with limited amounts of memory and non-

virtualized address space, the boot image (in case the boot media

is writable) may contain pre-initialized channel bodies in order to

avoid extra memory allocations and minimize the system boot

time.

6.4 Differentiation of Privileges
Optionally, if the processor supports memory protection, the

system may differentiate between user-level tasks and privileged

tasks, which are granted access to processor input-output

resources and system memory. The level of task privilege is then

provided in the boot image.

6.5 General Booting Procedure
The system boot procedure in accordance with the chansys design

can be described as follows.

(a) The boot image may be copied from read-only to random-

access memory, if necessary; (b) control is transferred to the main

initialization procedure; (c) the initialization procedure creates

(privileged) tasks (runs channel initialization procedures) for the

channels whose identification matches that of available hardware;

(d) the main initialization procedure also creates tasks for

(initializes) the default channels, e.g., memory swap-out channel

if the system supports memory virtualization. (e) The default

channel tasks establish communication with initialized hardware

service providers (e.g., hard drive channels). (f) After all default

and hardware-managing tasks (and the corresponding channels)

have been successfully initialized, the main initialization

procedure loads the first non-privileged task (from either boot

ROM or via the initialized channels), and that completes the

system boot process.

6.6 Channeled System Organization
From the chansys architecture perspective, a typical personal

computer system may be organized as shown in the figure below.

A personal computer here serves merely illustrative purposes to

let a reader quickly grasp the difference between traditional

system designs and the chansys architecture employing ROS

programming model.

The major difference introduced by the chansys design is that the

raw data are never exposed to the end user. Instead, all operations

are performed in a purpose-(or service-) oriented manner.

For example, the user may firstly select a desired operation (let it

be insertion of a picture into a text document). Then, connect the

selected operation with data sources. Note that there’s no need to

specify the location of the pictures and documents any more: the

user is responsible for object identification, that is, to specify what

an object is rather than where it is located, hence no files, folders,

and strict hierarchical data organization.

The introduction of specialized data acquisition units enables

more efficient search and indexing operations (including elements

of artificial intelligence) performed over the stored data. And the

presence of the topology configurator allows the user to change

program communication pattern dynamically (and transparently to

the communicating programs, as the channel communication

semantics remain unchanged). The latter is especially convenient

when abstracting remote communications.

The semantic storage manager (that organizes the incoming data

in accordance with its meaning – as reported by data providers)

logically complements the channeled system design.

Physical

Storage

Manager

text image
Program

storage

Job Selector/

Topology

Configurator

User

Interface

Manager

Text

acquisition

Image

acquisition

Processing

Responsible for text

(image) type differentiation,

search and indexing

operations

Runs/updates programs

(processing units) and

connects them with data

providers

Semantic storage –

facilitates efficient and

transparent compression

and AI operations

Figure 20: Typical personal computer system from the

CHANSYS architecture perspective

7. PROGRAMMING LANGUAGE

SUPPORT
This section discusses possible changes to C/C++ language syntax

and code generation requirements in order to efficiently support

the ROS programming model.

7.1 Syntax Extension
Existing programming languages may need to be extended in

order to support the Resource-Owner-Service programming model

and facilitate program development in/for the chansys

environment.

In case of C++ language, the extension that may affect the

language semantics may be the channel type modifier to

indicate the type contents should be aggregated into a form

suitable for inter-task communication. The rest of communication

channel-related problems may be solved using special support

functions as illustrated in the figure below.

According to the figure, a channel type has first to be declared

(using channel type modifier), and memory regions for both

exporter and importer sides of the channel need to be allocated

(with standard memory allocation operators). Then, the channel

can be connected to by means of exporting the channel on one

side and importing the channel on the other side. That can be

accomplished by calling the provided export() and

import() functions and specifying channel pointers, the system

channel pointer, and the channel type (multi vs. dual channel).

The pointer checks after the function calls are given here for

shared address space environments, where the operating system

kernel is likely to move the channel body to some memory

location other than the initially allocated.

Each agent connected to a channel has its in-channel index

(retrieved by self()), which remains the same unless the agent

disconnects (calling disconnect() function) and then

reconnects (by means of import() and export() functions)

to the channel.

The rest of channel-related functions are recommended to accept a

pointer to a channel in question, a pointer to the current system

channel (task pointer), and a pointer to the local storage or an

optional parameter. This allows prototyping of the majority of

channel functions, such as the initial task function, the channel

initialization function (which is supposed to allocate and return a

pointer to the allocated local storage), and any other function that

may be contained in a channel.

Figure 21: Exemplary C++ language support for Resource-

Owner-Service programming model

Figure 22: In-channel and channel-related function prototypes

7.2 Code Generation
Care should be taken when writing programs for the chansys

environment using compilers intended for other operating

systems. It is a programmer’s responsibility not to use the static

storage class variables and operate only on automatic (stack) and

dynamically allocated data. Ideally, a chansys-specific compiler

should be able to detect static data references and generate

memory access address computation relatively to the accessing

function address.

Another problem that cannot be solved by traditional compilers

(other than assembler) is the maintenance of combined code and

/// in-channel functions are advised to have

/// the following prototype, wherein:

/// chanfunc may be:

/// task start function with (arg0, sys, arg1) semantics

/// channel initialization returning a pointer to local data,

/// or any service function contained in a channel

/// chan is the self-pointer to the channel

/// sys is the pointer to the system channel

/// loc is the pointer to local data or an optional parameter

void* chanfunc(chan, sys, loc);

/// declarations

channel class A /// a new type modifier

{

 int x;

 virtual void f();

 void g();

} *a, *b, *c, *d;

/// system channel – to make system calls

syschan_t* sys;

bool multi = false; /// or true for multi-channels

/// allocations

a = new A; /// combines x, f, g, and vft

b = new A; /// import space allocation

/// support functions

c = export(a, sys, multi); /// export a channel of type A

if(c != a){ delete a; a = c; } /// the system moved the channel

d = import(b, sys, multi); /// import a channel of type A

if(d != b){ delete b; b = d; } /// the system moved the channel

int i = self(a, sys); /// get in-channel client’s index

disconnect(a, sys); /// disconnect the exported channel

disconnect(b, sys); /// disconnect the imported channel

/// OS may free channel descriptors now

data channels. The chansys-specific compiler should be able to

aggregate channel function bodies and channel data in order to

construct a solid memory object to be further mapped, moved, and

processed by the operating system as appropriate.

For processor architectures that support data execution protection,

the code and data aggregation should be performed on a different

page basis not to compromise the system security.

8. CONCLUSION
Operating system is a key element that binds together various

hardware and software components in a computer system, hence

the efficiency of the operating system’s design and the maturity of

its programming models often play a crucial role in the success or

failure of the entire product.

In this article we tried to address the challenges of modern parallel

and distributed computer systems (focusing mainly on the needs

of wireless sensor networks as the most extreme case of a

heterogeneous system) by introducing a service-oriented approach

to parallel program execution and communication.

Such service orientation infers new principles of control transfer,

task scheduling, and resource management, as well as new logical

topologies of program communication and synchronization,

which, in their turn, provide for a very adaptive and scalable

operating system design and unification of programming models

for a wide range of hardware systems, from sensor motes to

desktops.

Many of the disclosed operating system design principles were

initially implemented by the authors of this article in 1999 as part

of a light-weight operating system that served as a predictable and

fully controllable testing environment for Windows NT

executables.

Since then, we refined and generalized our operating system

architecture and plan to complete its implementation for a custom

wireless sensor network, both at the sensor and base station sides,

and port the monitoring, control, and communications software to

the new channel-based parallel programming schemes.

9. REFERENCES
[1] Daniel P. Bovet, Marco Cesati. Understanding the Linux

Kernel. O'Reilly, First Edition October 2000. ISBN: 0-596-

00002-2

[2] Shucker at al. Embedded Operating Systems for Wireless

Microsensor Nodes University of Colorado, 2005.

www.knovel.com

[3] Lucero, S., Schatt, S. Wireless Sensor Networking (WSN) in

Industrial Automation. ABI Research, 2007. abiresearch.com

[4] Zuberi et al. EMERALDS: a small-memory real-time

microkernel. 17th ACM Symposium on Operating Systems

Principles (SOSP ’99), Published as Operating Systems

Review, 34(5):277–291, Dec. 1999

[5] Shah Bhatti et al. MANTIS OS: An Embedded

Multithreaded Operating System for Wireless Micro Sensor

Platforms. ACMKluwer Mobile Networks & Applications

(MONET) Journal, Special Issue on Wireless Sensor

Networks, August 2005

[6] Rowe et al. FireFly: A Time Synchronized Real-Time Sensor

Networking Platform. Department of Electrical and

Computer Engineering Carnegie Mellon University.

www.andrew.cmu.edu/~agr/pubpg/firefly-06.pdf

[7] PicOS. Olsonet Communications, 2006.

http://www.olsonet.com

[8] Contiki 2.0 Reference Manual, 2007.

http://www.sics.se/contiki/publications-and-

documentation.html

[9] Han et al. A Dynamic Operating System for Sensor Nodes.

University of California. http://nesl.ee.ucla.edu/projects/sos/

[10] Singularity Operating System. Microsoft Research, 2007.

http://research.microsoft.com/os/singularity/

[11] ReactOS Operating System.

http://www.reactos.org/en/index.html

http://www.knovel.com/
http://www.abiresearch.com/
http://www.andrew.cmu.edu/~agr/pubpg/firefly-06.pdf
http://www.olsonet.com/
http://www.sics.se/contiki/publications-and-documentation.html
http://www.sics.se/contiki/publications-and-documentation.html
http://nesl.ee.ucla.edu/projects/sos/
http://research.microsoft.com/os/singularity/
http://www.reactos.org/en/index.html

	1. INTRODUCTION
	2. DESIGN PRINCIPLES
	2.1 Resource-Owner-Service Model
	2.2 Cooperative Preemption
	2.3 Yield-To Model
	2.4 Deterministic Task Schedule
	2.5 Performance-Driven Communication
	2.6 Channel Naming Convention
	2.7 Channel Topology
	2.8 Simplified Code Structure

	3. CORE FUNCTIONALITY
	3.1 Core Functional Diagram
	3.2 Task Creation
	3.3 Task Dispatching
	3.4 Channel Management
	3.5 Memory Management
	3.6 System Calls and Context Management
	3.7 Processor Management
	3.8 Debugging Support

	4. CORE COMPLEXITY LEVELS
	4.1 Channel Management Complexity
	4.2 Memory Management Complexity
	4.3 Task Management Complexity

	5. CHANNELED COMMUNICATION EXAMPLES
	5.1 Dual Channels
	5.2 Multi-Channels
	5.3 Task Pools
	5.4 Request Pools
	5.5 Access Tokens
	5.6 Parallel Device Data Handling
	5.7 Remote Channeling

	6. SYSTEM DESIGN EXAMPLES
	6.1 Single Task Systems
	6.2 Multi-Task Systems
	6.3 Shared Memory Space
	6.4 Differentiation of Privileges
	6.5 General Booting Procedure
	6.6 Channeled System Organization

	7. PROGRAMMING LANGUAGE SUPPORT
	7.1 Syntax Extension
	7.2 Code Generation

	8. CONCLUSION
	9. REFERENCES

